\begin{tabbing} (\=(((((RenameVar `g' 3) \+ \\[0ex]CollapseTHENM (Unfold `decidable` 3))$\cdot$) \\[0ex]CollapseTHENM (((With \-\\[0ex]$\lambda$\=$x$,$y$. case $g$($x$,$y$) of inl($a$) =$>$ tt $\mid$ inr($b$) =$>$ ff (D 0)) \+ \\[0ex]CollapseTHENA ( \-\\[0ex](Auto\_aux (first\_nat 1:n) ((first\_nat 1:n),(first\_nat 3:n)) (first\_tok :t) inil\_term)))$\cdot$)) \\[0ex]$\cdot$\=) \+ \\[0ex]CollapseTHENM (Reduce 0))$\cdot$ \- \end{tabbing}